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Abstract— The game of tic-tac-toe is a well-known paper-and-

pencil game that is played by two players. It is a simple game, yet 

when viewed purely by numbers, it can get interesting. 

Combinatorics can be used to analyze the game and gain a better 

understanding of the metrics of tic-tac-toe. After analysis, it is 

concluded that there are a total of 19 683 possible states of a tic-tac-

toe game board, without minding the rules of the game. When 

considering rules and limitations, the number of reachable game 

states reduces to 5478. There are 255 168 possible, playable games 

of tic-tac-toe, where 51% of them are won by the player who plays 

first, with a clear advantage for them in other metrics too. 

 

Keywords—Tic-Tac-Toe, Combinatorics, Board Game, 
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I.   INTRODUCTION 

 Known as ‘tic-tac-toe’, ‘noughts and crosses’, and ‘Xs and 

Os’ amongst other names, this simple two player game is played 

throughout the world even across different cultures. The origins 

of this paper-and-pencil game, from now on referred to as tic-

tac-toe, are not certain, although variations of it have been traced 

back to as far as 1300 BC in ancient Egypt, with three-in-a-row 

type game boards found on etched on to roof tiles. The game 

developed from variations such as terni lapilli (‘three pebbles at 

a time’) which was found to be played in the Roman Empire, 

although the rules were quite different then. As history 

progressed, the modern, specifically English, names started 

appearing around the 1800s, and so did the modern rules too. 

The simplicity of setting up and playing tic-tac-toe is probably 

the reason this game has withstood the test of time and thrived 

to become a classic game amongst the people. 

If one were familiar with tic-tac-toe, one would quickly notice 

that it is strategically a simple game. If both players play the 

optimal strategy, the game will always lead to a draw. There are 

several interpretations of the optimal strategy. One of them is 

laid out by Crowley and Siegler in 1993, which follows 8 rules 

that are ordered specifically in a hierarchy: 

1. Win: Complete a three-in-a-row. 

2. Block: Block the opponent from a three-in-a-row. 

3. Fork: Create two possible three-in-a-rows. 

4. Block Fork: Block opponent from making a fork.  

5. Center: Play center if blank 

6. Opposite Corner: Play the opposite corner of opponent. 

7. Corner: Play corner if blank  

8. Side: Play side if blank  

A player only has to follow these rules in the exact order to 

achieve an expert play. This will result in in either a guaranteed 

win if the opposing player does not follow the optimal play and 

blunders, or a draw if the opposing player is optimal. This only 

counts if the player is starting first. If the second player plays 

optimally, the outcome would always be a draw. Of course, 

there are more intuitive strategies to follow, but these ordered 

rules allow an easier way to make an algorithm that plays the 

optimal tic-tac-toe. 

In game theory, a game like tic-tac-toe that always results in 

a draw is called a futile game. So, why analyze a game so trivial 

and futile? As simple as the game might be, there are still aspects 

of it that are of interest for further analysis. This paper will view 

tic-tac-toe from a combinatorial perspective, steering away from 

strategic and algorithmic approaches, and towards pure numbers 

and combinatorics. The analysis will answer questions such as, 

among others: How many possible game board states are there? 

How many reachable game states are there? How many possible 

different games of tic-tac-toe can be played? How significant is 

the advantage of starting first when viewed combinatorically? 

These questions may seem trivial but are in fact quite a bit more 

complex than they seem. The simple rules limit the possible 

combinations of game states and result in interesting outcomes. 

 

II.  THEORETICAL FRAMEWORK 

A. Tic-Tac-Toe 

For completeness’ sake, the rules of tic-tac-toe will be laid out 

to assist and validate our analysis. The game board is often 

constructed by drawing 4 lines, two of them parallel vertically, 

and the other two horizontally, essentially creating a 3x3 grid in 

the simplest way. Of course, it can be made differently as long 

as it has 3 rows and 3 columns. Each of the two players will be 

assigned a mark, usually an X or an O, and take turns filling up 

the grid with their respective marks. A player can only play on 

empty slots.  

A player wins if they are the first to arrange three of their 

marks in a row. This can be done horizontally, vertically, or 

diagonally. The game stops after a win. If the board is 

completely filled without anyone arranging three marks in a 

row, then the game results in a draw. 
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FIGURE I.  AN AVERAGE GAME OF TIC-TAC-TOE 

There is no defined rule for determining which player starts 

first, but for this analysis, it will be assumed that the player 

assigned with the mark ‘X’ always starts first. Therefore, there 

will be at most 5 X’s and 4 O’s when the board is full. This will 

be very important for our calculations and will be elaborated 

further in the following sections. 

 

B. Combinatorics 

Combinatorics is a branch of mathematics that deals with 

counting the number of arrangements of objects or finite 

structures without necessarily enumerating all possible 

combinations or permutations by hand. In short, combinatorics 

can be summed up by the question “How do you count without 

counting?”. There are a lot of topics that are discussed under 

combinatorics, but two of the simpler concepts in combinatorics 

are the sum rule and the product rule, which will prove to be 

helpful in analyzing our case of tic-tac-toe. 

The sum rule is quite intuitive and states that if there are n(A) 

ways to do A and n(B) ways to do B such that the phenomena A 

and B are distinct and not related to one another, then there are 

n(A) + n(B) ways to do A or B. A simple example: John wants 

to go to a neighboring city on the weekend. There are 3 bus 

services and 2 train services leading to that city. John can choose 

either going by bus or train. Thus, John has 3 + 2 = 5 ways to 

get to the neighboring city. 

The product rule is also intuitive. It states that if there are n(A) 

ways to do A and n(B) ways to do B such that the phenomena A 

and B are distinct and not related to one another, then there are 

n(A) × n(B) ways to do A and B. Notice the difference between 

the two, one represents or, and the other and. An example of this 

rule would go as such: Frank is in California, and he wants to 

fly to India. There are 3 flights from California to France, and 2 

flights from France to India. Frank is fine with transiting through 

France. Thus, Frank has 3 × 2 = 6 ways to fly to India from 

California. 

FIGURE II.  FLIGHTS AVAILABLE TO FRANK. SOURCE: 
HTTPS://BRILLIANT.ORG/WIKI/RULE-OF-SUM-AND-RULE-OF-PRODUCT-

PROBLEM-SOLVING/ 

 

C. Permutations 

Another aspect of combinatorics is permutation. Permutations 

can be defined as the number of arrangements of a selection of 

objects, with regards to their order. If we take a row of  n 

objects, there would be n slots where we could put and rearrange 

these objects. Starting from the first slot, there would be n 

possible objects to put there. The second slot can have 𝑛 − 1 

possible objects. The next slot has 𝑛 − 2, and so on and so forth. 

Applying the product rule, it can be said that the number of ways 

to arrange a row of n objects can be calculated as such: 

 

𝑃(𝑛, 𝑛) = 𝑛 × (𝑛 − 1) × (𝑛 − 2) × … × 2 × 1 = 𝑛! (1) 

 

Permutations can also be more generalized. A permutation of 

𝑛 objects into 𝑟 slots, or taking 𝑟 objects from a set of 𝑛 different 

objects, with 𝑟 ≤ 𝑛 and written as 𝑃(𝑛, 𝑟) can be calculated with 

the following formula: 

 

𝑃(𝑛, 𝑟) = 𝑛(𝑛 − 1) … (𝑛 − 𝑟 + 1) =
𝑛!

(𝑛−𝑟)!
 (2) 

 

Another possibility is the permutation of 𝑛 objects into 𝑛 

slots, but with some objects that are the same, or 

indistinguishable, from a number of other objects. If there were 

𝑛1 of a type of objects, 𝑛2 of another type of objects, and so on 

to 𝑛𝑘, then (1) can be generalized into: 

 

𝑃(𝑛; 𝑛1, 𝑛2, … , 𝑛𝑘) =
𝑛!

𝑛1!𝑛2!…𝑛𝑘!
  (3) 

 

D. Combinations 

Similar yet different than permutations, combinations are also 

an important part of combinatorics, thus the name. Akin to 

permutations, combinations are the number of arrangements of 

a selection of objects, without regards to their order. Since order 

does not matter, the number of combinations is always lower 

than the number of permutations. A combination of 𝑛 objects 

into 𝑟 slots, written as 𝐶(𝑛, 𝑟) can be formulated as such: 

 

𝐶(𝑛, 𝑟) =
𝑛(𝑛−1)…(𝑛−𝑟+1)

𝑟!
=

𝑛!

𝑟!(𝑛−𝑟)!
  (4) 

 

What if there are multiple identical items? Combinations can 

be further generalized in this case. In the analogy of objects and 

slots, identical categorization can be interpreted as the slots 

allowing multiple objects inside of them. If there are 𝑟 objects 

to be put inside 𝑛 slots (note: the reverse notation as before), 

then the number of ways those objects can be put inside the slots 

is calculated with the following notation: 

 

𝐶(𝑛 + 𝑟 − 1, 𝑟) = 𝐶(𝑛 + 𝑟 − 1, 𝑛 − 1)  (5) 

 

Both of these calculations will result in the same number of 

combinations when put into equation (4). If there is a limit of 

how many objects can be put into a certain slot, then one can use 

the sum rule to calculate each possibility, or reduce the number 

of objects available. 

https://brilliant.org/wiki/rule-of-sum-and-rule-of-product-problem-solving/
https://brilliant.org/wiki/rule-of-sum-and-rule-of-product-problem-solving/
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III. ANALYSIS 

A. Board States 

The first analysis will be on the number of possible states the 

tic-tac-toe game board can be in. A board state is defined as the 

state of a tic-tac-toe board, in which each slot of the 3x3 board 

can be assigned to three different states, an X, an O, or possibly 

also an empty slot. In this first analysis, the rules of tic-tac-toe 

and the limitations thereof will be ignored, and focus will be put 

on purely the number of states the board can be in. With 9 slots 

available on the board and each slot having 3 possible states, we 

can use the product rule of combinatorics to calculate the 

number of states to be: 

 

3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 = 39 = 19683.  (6) 

 

Thus, there are 19 683 ways to put in or not put in the marks 

X and O on a tic-tac-toe game board. Of course, a portion of 

these states will not be possible during a real game of tic-tac-toe, 

or in other words: unreachable. Therefore, further analysis is 

required.  

 

B. Reachable Game States 

A possibly more useful metric would be the number of game 

board states that are reachable in a tic-tac-toe game. This 

analysis is considerably more complex than the first, since we 

have to obey the rules of tic-tac-toe and consider them in the 

calculations. We shall define a couple of variables first. The 

number of X marks, O marks, and empty slots shall be defined 

as 𝑛𝑥 , 𝑛𝑜, 𝑎𝑛𝑑 𝑛𝑒 consecutively.  

FIGURE III.  EXAMPLES OF UNREACHABLE GAME STATES 

The first rule we must consider is not necessarily a rule, but 

the nature of the game. Two players take turns in placing their 

marks on the board. With the assumption that the player with the 

mark ‘X’ starts first, that means that the number of X’s, O’s, and 

empty slots follow: 

 

𝑛𝑒 + 𝑛𝑥 + 𝑛𝑜 = 9 (7) 

𝑛𝑥 = 𝑛𝑜  𝑜𝑟  𝑛𝑥 = 𝑛𝑜 + 1 (8) 

 

With this in mind, we can define every possible turn of the 

game in terms of these variables. For example, the start of the 

game would be 𝑛𝑥 = 0, 𝑛𝑜 = 0, 𝑛𝑒 = 9, after the first turn by 

player X, the turn would be defined as 𝑛𝑥 = 1, 𝑛𝑜 = 0, 𝑛𝑒 = 8, 

and so on for every turn until 𝑛𝑥 = 5, 𝑛𝑜 = 4, 𝑛𝑒 = 0. To 

calculate every possible state at every turn, we can use the 

permutation in (3), with 9 slots available on the board and 

𝑛𝑥, 𝑛𝑜, 𝑛𝑒 numbers of identical marks, i.e., objects. Thus, the 

number of possible permutations at every turn is as follows: 

 

𝑃(9; 𝑛𝑥 , 𝑛𝑜, 𝑛𝑒) =
9!

𝑛𝑥!𝑛𝑜!𝑛𝑒!
 (9) 

 

Start of the game (𝑛𝑥 = 0, 𝑛𝑜 = 0, 𝑛𝑒 = 9): 

𝑃(9; 0, 0, 9) =
9!

0!0!9!
= 1 (10) 

 

After turn 1 (𝑛𝑥 = 1, 𝑛𝑜 = 0, 𝑛𝑒 = 8): 

𝑃(9; 1, 0, 8) =
9!

1!0!8!
= 9 (11) 

 

After turn 2 (𝑛𝑥 = 1, 𝑛𝑜 = 1, 𝑛𝑒 = 7): 

𝑃(9; 1, 1, 7) =
9!

1!1!7!
= 72 (12) 

 

After turn 3 (𝑛𝑥 = 2, 𝑛𝑜 = 1, 𝑛𝑒 = 6): 

𝑃(9; 2, 1, 6) =
9!

2!1!6!
= 252 (13) 

 

After turn 4 (𝑛𝑥 = 2, 𝑛𝑜 = 2, 𝑛𝑒 = 5): 

𝑃(9; 2, 2, 5) =
9!

2!2!5!
= 756 (14) 

 

After turn 5 (𝑛𝑥 = 3, 𝑛𝑜 = 2, 𝑛𝑒 = 4): 

𝑃(9; 3, 2, 4) =
9!

3!2!4!
= 1260 (15) 

 

After turn 6 (𝑛𝑥 = 3, 𝑛𝑜 = 3, 𝑛𝑒 = 3): 

𝑃(9; 3, 3, 3) =
9!

3!3!3!
= 1680 (16) 

 

After turn 7 (𝑛𝑥 = 4, 𝑛𝑜 = 3, 𝑛𝑒 = 2): 

𝑃(9; 4, 3, 2) =
9!

4!3!2!
= 1260 (17) 

 

After turn 8 (𝑛𝑥 = 4, 𝑛𝑜 = 4, 𝑛𝑒 = 1): 

𝑃(9; 4, 4, 1) =
9!

4!4!1!
= 630 (18) 

 

After turn 9 (𝑛𝑥 = 5, 𝑛𝑜 = 4, 𝑛𝑒 = 0): 

𝑃(9; 5, 4, 0) =
9!

5!4!0!
= 126 (19) 

 

Now, games states at every reachable turn of the game can be 

calculated using the sum rule: 

 

1 + 9 + 72 + 252 + 756 + 1260 + 1680 + 1260 + 630 +
126 = 6046 (20) 

 

The analysis so far implies that there are 6046 possible, 

reachable game states. This may seem like the end of this 

analysis, but there is one other thing we have to consider. Once 

a three-in-a-row is made, the game stops. Because of this, there 

are certain states containing three-in-a-row formations that are 

unreachable, mostly ones that are 1 turn too much from a 

winning state. To count these states, we must define all winning 

three-in-a-row formations. 

FIGURE IV.  ALL POSSIBLE THREE-IN-A-ROW FORMATIONS FOR X 
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There are 8 winning formations for a given mark, with 3 

vertical formations in every column, 3 horizontal formations in 

every row, and 2 diagonal formations in the diagonals. The 

remaining 6 slots beside the formation can be filled with marks, 

abiding the rules in (7) and (8). Now, if one does a little bit of 

trial and error, one can find that there are 4 cases in which a 

winning state is unreachable. A winning state for X but with the 

same amount (3) of O’s in the remaining slots, a winning state 

for X but with 3 O’s and 1 other X in the remaining slots, a 

winning state for O but with 4 X’s, and the last case is a winning 

state for O but with 5 X’s and one other O in the remaining slots. 

If we multiply each case with every possible three-in-a-row 

formation and add them up using the sum rule, we can count the 

amount of unreachable winning states: 

 

8 × 𝑃(6; 0, 3, 3) = 8 ×
6!

0!3!3!
= 8 × 20 = 160 (21) 

8 × 𝑃(6; 1, 4, 1) = 8 ×
6!

1!4!1!
= 8 × 30 = 240 (22) 

8 × 𝑃(6; 4, 0, 2) = 8 ×
6!

4!0!2!
= 8 × 15 = 120 (23) 

8 × 𝑃(6; 5, 1, 0) = 8 ×
6!

5!1!0!
= 8 × 6 = 48 (24) 

160 + 240 + 120 + 48 = 568 (25) 

 

Now, we can subtract these seemingly reachable yet 

unreachable states from the previous number of states calculated 

in (20): 

 

6046 − 568 = 5478 (26) 

 

With this, we have removed the unreachable states and finally 

obtained the number of possible and reachable game states in a 

game of tic-tac-toe, that is 5478 game states. 

 

C. Playable Games 

Another very interesting metric is the number of tic-tac-toe 

games that can be played. This is very different than the previous 

analysis on game states, since a game of tic-tac-toe consists of a 

series of turns that end in a win, loss, or draw. This number will 

be significantly higher. If we were to approach this problem 

naively, we would say that there are 9 possible ways of placing 

the first mark X in the first turn, 8 possible ways of placing an 

O mark in the second turn, and so on until the board is filled: 

 

9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 9! = 362880 (27) 

 

So, there are 362 880 ways to fill up the board if two players 

take turns. But notice how this does not fit the definition of a 

game, that is a series of turns that end in a win, loss, or draw for 

a player. Many, if not most of the games in (27) go beyond a 

game that was already won by a player, or don’t have sufficient 

turns to result in a win, loss, or draw at all, since it takes at least 

5 turns to generate a winning state. So, how do we calculate the 

number of games playable? To do that, we have to count the 

number of games ending in every turn from turn 5, other words, 

we apply the sum rule for games ending on turn 5, games ending 

on turn 6, games ending on turn 7, games ending on turn 8, and 

games ending on turn 9. These games cannot contain games that 

have already ended. 

On turn 5, the only player who can win is player with the mark 

X, since there would be 5 marks on the board and according to 

rules (7) and (8) that could only be 3 X’s and 2 O’s. There are 8 

winning formations that X could form, and for each of those 

there would be 𝑃(3,3) ways to put those three X’s in the three 

slots. We can put the remaining 2 O’s in the remaining 6 slots in 

𝑃(6; 0, 2, 4) forms, with 𝑃(2, 2) ways to do so. With the product 

rule, the number of games ending on turn 5 is as such: 

 

8 × 𝑃(3,3) × 𝑃(6; 0, 2, 4) × 𝑃(2,2) = 8 × 3! ×
6!

0!2!4!
× 2! =

8 × 6 × 15 × 2 = 1440 (28) 

 

On turn 6, it would seem both player X and player O have the 

possibility to have won the game, since there would be 3 X’s 

and 3 O’s. But one has to consider that a player can only win on 

their own turn, thus only player O could win on turn 6. From 

here on out, we can conclude that player X can win only on odd 

number of turns, and player O can win only on even number of 

turns. Same as before, there are 8 winning formations too for 

mark O, and for each of those there are 𝑃(3, 3) ways to make 

them. There are 3 X’s that we can put into the remaining 6 slots, 

so that’s another 𝑃(6; 3, 0, 3) with 𝑃(3, 3) ways each. But these 

games cannot contain games where X has won in the previous 

turn and where O formed a winning formation after that. Since 

the diagonal winning formations do not allow another diagonal 

of the other mark, only the vertical and horizontal forms are 

considered. For each of the orientations, there are 𝑃(3,3) ways 

X and O can have winning formations at once, and 𝑃(3,3) ways 

to put the X marks in and 𝑃(3,3) ways to put in the O marks. 

We subtract these invalid 6 turn games from the previous 

calculation as such, to obtain the number of games ending on 

turn 6: 

 

(8 × 𝑃(3,3) × 𝑃(6; 3, 0, 3) × 𝑃(3,3)) − 2 × (𝑃(3,3) ×

𝑃(3,3) × 𝑃(3,3)) = (8 × 3! ×
6!

3!0!3!
× 3!) − 2 × (3! × 3! ×

3!) = 5328 (29) 

 

On turn 7, X is the only possible winner. There are 4 X’s and 

3 O’s on the board, so the calculation for winning formations of 

X is a little bit more complex. There are 8 three-in-a-rows as 

usual, but there would be not 𝑃(4,4) ways to put in the X marks. 

Since it’s the 7th turn, the 4th X cannot be placed outside of the 

three-in-a-row formation since it would make the game invalid. 

There are then 3 ways to put in the 4th X and 𝑃(3,3) ways to put 

in the first 3 X’s in the other slots. This then is times the ways 

you could put the lone X mark in the other 6 slots, so that’s 

another 𝑃(6; 1,0,5). For the O marks, there are 5 slots left, that 

can be counted with 𝑃(5; 0,3,2) with 𝑃(3,3) ways to do so. As 

on turn 6, there are games that are invalid because they contain 

winning games from the previous turn. The unplayable games 

contain both X and O winning formations, one each, but only 

combinations of either two horizontal or two vertical forms. The 

calculation is similar to turn 6, but without forgetting the lone X 

mark that will reside in one of the three remaining slots, thus 

𝑃(3; 1,0,2), and that the 4th X must be in the three-in-a-row 

formation, like mentioned before. Then the number of games 

ending on turn 7 would be: 
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(8 × 3 × 𝑃(3,3) × 𝑃(6; 1, 0, 5) × 𝑃(5; 0,3,2) × 𝑃(3,3)) − 2 ×

(𝑃(3,3) × 3 × 𝑃(3,3) × 𝑃(3,3) × 𝑃(3; 1,0,2)) = (8 × 3 ×

3! ×
6!

1!0!5!
×

5!

3!2!
× 3!) − 2 × (3! × 3 × 3! × 3! × 3) = 47952

 (30) 

 

On turn 8, the player with mark O wins. Calculations will be 

similar to turn 7, but with O as marks in the winning formations. 

There are 4 X’s and 4 O’s. Again, we have 8 three-in-a-row 

patterns, and the last O must be put in the three-in-a-row. So, 

there are 3 ways to put the last O and 𝑃(3,3) ways for the first 

three O’s. Also, the O outside of the three-in-a-row has 6 

possible slots, 𝑃(6; 1,0,5). The 4 X’s can reside in the remaining 

5 slots, with 𝑃(5; 4,0,1) permutations and 𝑃(4,4) ways to put 

them in. For the invalid games, everything is similar to turns 6 

and 7 except there is 1 spare O and 1 spare X, which will reside 

in the spare 3 slots, thus 𝑃(3; 1,1,1). The last O has to be in the 

three-in-a-row too. 

 

(8 × 3 × 𝑃(3,3) × 𝑃(6; 1, 0, 5) × 𝑃(5; 4,0,1) × 𝑃(4,4)) − 2 ×

(𝑃(3,3) × 3 × 𝑃(3,3) × 𝑃(4,4) × 𝑃(3; 1,1,1)) = (8 × 3 ×

3! ×
6!

1!0!5!
×

5!

4!0!1!
× 4!) − 2 × (3! × 3 × 3! × 4! × 3!) =

72576 (31) 

 

Turn 9 is the last turn of the game and can result either in a 

win for X or a draw. Calculating all the valid games that end at 

turn 9 is quite complex and there are a wide variety of 

possibilities. Instead, we can use the numbers from all the 

previous turns to calculate them. Since all games that are a 

continuation of the games ending in all of the previous turns are 

invalid, we can subtract them from the number of possible 

games from (27). After ending on turn 5, the remaining 4 slots 

can be filled to continue an invalid game, with 𝑃(4,4) 

possibilities. After turn 6, there would be 3 slots, and so on. 

Thus, the number of games ending on turn 9 can be calculated 

as such: 

 

9! − (1440 × 4!) − (5328 × 3!) − (47952 × 2!) − (72576 ×
1!) = 127872 (32) 

 

There are 127 872 games ending on turn 9. This number 

includes player X wins and draws. If we want to get numbers for 

the two different outcomes, we can calculate the number of 

draws possible in a game of tic-tac-toe then subtract it from the 

total number of games ending on turn 9. There are 3 distinct 

draw patterns in tic-tac-toe:  

FIGURE V.  3 DISTINCT DRAW PATTERNS IN TIC-TAC-TOE 

 

All games that end in a draw is ends in one of these patterns 

or a reflection or rotation of them. Thus, with reflections and 

rotations, there are 16 board states that are end states for games 

ending in a draw. Also calculate the fact that there are 

guaranteed 5 X’s and 4 O’s on the board, 𝑃(5,5) ways to put in 

the X’s and 𝑃(4,4) ways to put in the O’s. The number of games 

ending in a draw is as such: 

 

16 × 𝑃(5,5) × 𝑃(4,4) = 16 × 5! × 4! = 46080 (33) 

 

The number of game end on turn 9 with a win for X can now 

be calculated easily by subtracting from (32): 

 

127872 − 46080 = 81792 (34) 

 

Finally, the results of this particular analysis can be summed 

up into a table, with percentages relative to the number of 

playable games in total: 

TABLE 1. PLAYABLE GAMES OF TIC-TAC-TOE 

Game Possibilities Percentage 

Win on turn 5 (X) 1440 0.56% 

Win on turn 6 (O) 5328 2.09% 

Win on turn 7 (X) 47952 18.79% 

Win on turn 8 (O) 72576 28.44% 

Win on turn 9 (X) 81792 32.05% 

Draw 46080 18.06% 

Total Playable Games 255168 100% 

 

Thus, it can be concluded that there are 255 168 possible 

games of tic-tac-toe, with consideration to all the rules and 

limitations of the game. Although calculated differently, these 

numbers coincide with the findings by Henry Bottomley in 

2001, which were used as a reference for this analysis. 

 

D. Advantage of Playing First 

Most people would know by intuition that playing on the first 

turn in tic-tac-toe is more advantageous, since one gets to choose 

where to play first, has more potential marks on the board, and 

so on. That is why tic-tac-toe is mostly played multiple times in 

a session, often the first to three points wins the session. But 

exactly how advantageous is playing first? By looking at our 

previous analysis, a new table can be made: 

TABLE 2. PLAYABLE GAMES OF TIC-TAC-TOE 

Game won by Possibilities Percentage 

X 131184 51.4% 

O 77904 30.5% 

Draw 46080 18.1% 

Total Playable Games 255168 100% 
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As can be seen in Table 2, if purely viewed by playable games 

and the combinatorics of it, the starting player, in this 

assumption the player with mark X, wins in approximately 51% 

of all playable games of tic-tac-toe, while the second player only 

wins about 30% of the time. The possible wins of the first player 

is 9 against 5 when compared to the wins of the second player. 

Meanwhile, these numbers also show that only 18% of games 

end in a draw. 

Clearly, the starting player has an advantage even when 

viewed combinatorically. Another thing to consider is also the 

fact that the starting mark, placed anywhere on the board, will 

decrease the number of winning formations of the opposing 

mark, which could explain the difference. Of course, the number 

of marks possible on the board is also different, with a maximum 

of 5 X’s and 4 O’s if X starts the game. Thus, allowing X to form 

more possible winning states. Since the number of turns is also 

odd, there are more opportunities for the player on odd turns. 

 

IV.   CONCLUSION 

In conclusion, combinatorics has proven itself to be useful for 

real applications, even as simple as a game of tic-tac-toe can 

have complex properties and can be solved. This analysis has 

provided answers for the questions asked in the introduction of 

this paper, that is 19 683 possible board states, 5478 reachable 

game states, and 255 168 playable games of tic-tac-toe. It has 

been proven that even when viewed with combinatorics, without 

considering strategies and algorithms, the starting player will 

always have the advantage, with 50% of possible games ending 

with their win. A starting player is in such an advantage because 

of several factors, such as having more marks to play, having 

more possible winning formations, and having more turns that 

allow them to win. An interesting finding was that even when 

most games of tic-tac-toe, in practice, end in a draw, only 18% 

of possible games of tic-tac-toe actually end in a draw.  

It has to be said that much more applicative and conclusive 

analysis can be done if strategies and algorithms are applied, and 

that these findings differ greatly from actual gameplay of tic-

tac-toe. When compared to algorithmic analysis, there are 

several differences in certain results of these calculations.  Note 

also that there is a possibility that some of these calculations are 

proven to be false, since the writer is not particularly well-versed 

in this field. Even so, these findings may be considered when 

applying deeper analysis and/or applications on this game, 

especially when references of this topic are often not very 

descriptive. 
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